Magma Ocean Covered Earth Before Moon-forming Impact

D-brief
By Korey Haynes
Apr 29, 2019 10:30 PMNov 19, 2019 9:45 PM
Moon Formation Origins - Wikimedia Commons
(Credit: Wikimedia Commons)

Newsletter

Sign up for our email newsletter for the latest science news
 

If the Earth were molten when it the impact occurred, it might be able to produce the moon we see today. (Credit: NASA/JPL-Caltech) For the past few decades, if you asked an astronomer how the moon was created, nearly all of them would tell you that a Mars-sized world nicknamed Theia crashed into the early Earth, sending a cloud of debris high into space where it coalesced into our silvery satellite. And there's strong evidence to support this idea. But dig deeper, and you'll find nagging problems with the theory. Almost all models of the giant impact imply that the moon should still contain a lot of Theia. But the more researchers study the chemical makeup of rocks from Earth and the moon, the more the two bodies seem alike, with no sign of Theia's chemical fingerprints. Now, a new study has re-imagined that impact with Theia slamming into an Earth and shows that if our world was covered with an enormous magma ocean at the time, it could solve the longstanding questions about how the moon formed.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.