In the realm of quantum mechanics, atoms and subatomic particles just don't follow the rules that we're governed by in the larger world of classical mechanics. For example, the
theory of quantum mechanics predicts that two or more particles can become "entangled" so that even after they are separated in space, when an action is performed on one particle, the other particle responds immediately. Scientists still don't know how the particles send these instantaneous messages to each other, but somehow, once they are entwined, they retain a fundamental connection [LiveScience].
Now, a new study has dragged entanglement a little bit closer to our classical world. Researchers managed to entangle two pairs of vibrating ions so that when the motion of one pair of ions was changed, the other pair reflected the change as well. Previously, researchers have entangled particles in much more esoteric ways, coordinating the spin of electrons or ...