The standard model of physics got it right when it predicted where the mass of ordinary matter comes from, according to a massive new computational effort. Particle physics explains that the bulk of atoms is made up of protons and neutrons, which are themselves composed of
smaller particles known as quarks, which in turn are bound by gluons. The odd thing is this: the mass of gluons is zero and the mass of quarks [accounts for] only five percent. Where, therefore, is the missing 95 percent? [AFP]
The answer, according to theory, is that the energy from the interactions between quarks and gluons accounts for the excess mass (because as Einstein's famous E=mc² equation proved, energy and mass are equivalent). Gluons are the carriers of the strong nuclear force that binds three quarks together to form one proton or neutron; these gluons are constantly
popping into existence and disappearing again. ...