Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Confirmed: Scientists Understand Where Mass Comes From

Discover how the mass of ordinary matter stems from quark-gluon interactions, reaffirming quantum chromodynamics principles.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

The standard model of physics got it right when it predicted where the mass of ordinary matter comes from, according to a massive new computational effort. Particle physics explains that the bulk of atoms is made up of protons and neutrons, which are themselves composed of

smaller particles known as quarks, which in turn are bound by gluons. The odd thing is this: the mass of gluons is zero and the mass of quarks [accounts for] only five percent. Where, therefore, is the missing 95 percent? [AFP]

The answer, according to theory, is that the energy from the interactions between quarks and gluons accounts for the excess mass (because as Einstein's famous E=mc² equation proved, energy and mass are equivalent). Gluons are the carriers of the strong nuclear force that binds three quarks together to form one proton or neutron; these gluons are constantly

popping into existence and disappearing again. ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles