Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Lorentz invariance and you

Explore spontaneous symmetry breaking and its intriguing implications for baryogenesis in physics and Lorentz invariance violation.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

Where were we? Ah yes, spontaneous symmetry breaking. When some field takes on a nonzero value even in empty space, and that field is affected by some symmetry transformation, the resulting symmetry is said to be "spontaneously broken," and becomes hard for us to see directly. The classic example is the electroweak symmetry of the Standard Model, which is purportedly broken by a Higgs field that we have yet to directly detect. The fields that get expectation values and spontaneously break symmetries are generally taken to be "scalar" fields -- that is, they are single functions of spacetime, not something more complicated like a vector field. If a vector field did get a nonzero expectation value, it would have to point somewhere, thereby picking out a preferred direction in spacetime. That means that Lorentz invariance -- the physical symmetry corresponding to rotations and changes of velocity -- would be broken. ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles