Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Four-Stranded DNA Makes Human Debut

Contrary to biological dogma, it appears human DNA can sometimes form a quadruple helix.

This top view of a G-quadruplex shows its structure in the DNA of a human telomere, where they frequently form. Thomas Splettstoesser/Wikimedia Commons

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

In describing the two-stranded structure of DNA, Cambridge University biologists James Watson and Francis Crick gave us the image of a twisting ladder they called a double helix. The rungs were connected by pairs of chemical bases called nucleotides: Adenine (A) paired with thymine (T), and cytosine (C) with guanine (G).

Now, 60 years later, researchers from the same institution have found a quadruplehelix — previously described only in microorganisms — in human cells. In place of rungs, the twisting, four-sided tower has platforms with a guanine nucleotide on each of four corners, hence the name G-quadruplex.

Chemist Shankar Balasubramanian and colleagues found the structures by engineering a special, fluorescent antibody that binds specifically to the four-stranded form. Initial results, published in January, trace the structures to cellular regions associated with explosive growth: telomeres, the protective caps of chromosomes implicated in aging and longevity, and cancer-causing genes.

G-quadruplexes may be ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles