For the last few months there's been some excitement among particle-astrophysicists about intriguing results from the PAMELA satellite experiment and the ATIC balloon experiment. (We also blogged about it here and here.) PAMELA claimed to see an excess in the number of high-energy cosmic positrons (anti-electrons) over what you would expect from conventional astrophysical sources, while ATIC (which can't distinguish between positrons and electrons) saw an overall rise in the number of positrons and electrons combined, more or less consistent with what PAMELA saw. One dramatic but plausible explanation for this result is that the positrons are produced when dark matter particles and antiparticles annihilated with each other, which would certainly be exciting. But it wasn't quite a home run, because there was no evidence for the corresponding excess of anti-protons you would probably also expect. (Although that is not a deal-breaker; with a little ingenuity, particle physicists are able ...
Fermi Waffles on Dark Matter
Recent findings from the PAMELA and ATIC experiments raise exciting possibilities about dark matter particles. Click to explore!
More on Discover
Stay Curious
SubscribeTo The Magazine
Save up to 40% off the cover price when you subscribe to Discover magazine.
Subscribe