Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

#70: The Proton Gets Small(er)

Recent findings reveal the proton size measurement could be 4% smaller, challenging existing quantum electrodynamics theories.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

Few things in physics have been more thoroughly studied than the proton, a fundamental building block of atoms. So it was a shock in July when Paul Knowles of the University of Fribourg in Switzerland claimed the proton is 4 percent smaller than everyone has thought for more than 50 years.

In the past, physicists have used electrons to measure the proton’s size indirectly. When a laser zaps an electron orbiting a proton, the electron undergoes what is called the Lamb shift, absorbing energy and jumping to a higher energy level. According to quantum electrodynamics, the Lamb shift is partly a function of the proton’s size; this allows physicists to infer its measurements. But instead of lasing electrons, Knowles examined protons with particles called muons, which he calls “the electron’s fat cousin.” Muons, he says, are more sensitive to the proton’s size, and so their Lamb shift gives a much ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles