Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

The Year in Science: Physics 1997

Cluster Bombs

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

One promising method for creating nuclear fusion is to zap pellets of hydrogen fuel with lasers. To achieve temperatures and pressures high enough to force the hydrogen to fuse into helium, however, scientists have had to build big lasers at considerable expense. Last March a group of physicists at Imperial College in London announced a way to do fusion research with a laser small enough to fit on a tabletop. The trick was to take advantage of the peculiar physics of atomic clusters.

Whereas big laser-fusion devices work by forming a tightly compressed plasma of about a hundred million trillion highly energetic hydrogen atoms, Todd Ditmire and his colleagues squirted an extremely fine mist of xenon into a vacuum chamber, where the xenon atoms hung in clusters—microscopic droplets—of about 2,500 atoms each. Then the researchers fired a sharply focused laser beam into the mist for less than a trillionth of ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles