Everything was ready. The lab’s blast walls were up; sheets of Kevlar hung to catch shrapnel; banks of capacitors on the co-opted Air Force experiment primed to unleash 12 million amps of current; X-ray detectors set to snag bursts of photons; bottles of celebratory champagne chilled. If all went as planned, Glen Wurden would be a very happy man, and one experiment closer in his long-shot effort to exploit a nearly limitless source of energy.
The champagne had to wait, though, because something went wrong. Not a glitch, not a minor mishap. An explosion. “The floor shook; the walls shook; there was a hell of a boom,” says Wurden, a sandy-haired, 54-year-old physicist and fusion program manager at Los Alamos National Laboratory in New Mexico. “An Air Force guy with us said, ‘Damn, that was loud!’ One of the Kevlar blankets was tossed 40 feet. A piece of shrapnel went through one of the air-conditioning ducts. The experiment was a spectacular failure.”
For someone talking about a fantastically borked bit of work, Wurden sounds almost cheerful. We are sitting in his office at Los Alamos, a 45-minute drive northwest of Santa Fe, on a cool September afternoon, nine months after the explosion. No one was hurt that day—the blast walls protected Wurden and his colleagues from the, uh, mistake in the adjoining room. “It turns out there was a short circuit,” Wurden says as we look on his computer monitor at photos of a blackened, debris-strewn lab. The short overloaded the equipment with 18 million amps, delaying for a few months the initial test of technology that could yield the world’s first commercially viable nuclear fusion reactor.
“My goal in life is to make fusion energy happen. Period,” Wurden says. The control of nuclear fusion—the reaction that powers stars and hydrogen bombs—would permanently solve the world’s energy problems, not to mention a few geopolitical ones. No small ambition, by any measure. But Wurden harbors another goal, nearly as daunting. He wants to beat the world’s two biggest fusion projects in the race to make fusion not just possible but practical. The competition could scarcely be more lopsided. The ranking fusion heavyweights, one in France and one in California, each have at least a thousand-to-one funding advantage over Wurden’s project and a huge edge in manpower as well. ITER—an international fusion experiment now under construction in the south of France—will probably cost $20 billion by the time it is finished in 2018. The $3.5 billion National Ignition Facility (NIF) in Livermore, California, is slated to begin fusion tests by 2012, after 15 years of construction and development.
When I tell Wurden that I would like to compare his research favorably with the work going on at NIF and ITER, he tries to discourage me. “I’m not comfortable with that. Why should we be in the same paragraph with a $4 billion machine? We’re not even a $4 million operation.” Yet after I spend a couple of afternoons with him, it becomes clear that he thinks he has a reasonable shot at something that has eluded researchers for decades: creating a fusion device that yields more energy than it consumes, and doing so on a budget of tens of millions instead of billions.