It's a trap! (For antimatter.) Researchers report this week in Nature that they've managed to corral atoms of antimatter in the lab and keep them around for about one-sixth of one second—an eternity in particle physics. The ability to trap these atoms means scientists could soon have the ability to study them directly, and perhaps answer one of the fundamental questions of the universe: Why the matter and antimatter present after the Big Bang didn't annihilate each other completely and leave a matter-less universe behind. Jeffery Hangst led the research team at CERN's ALPHA collaboration.
It's not easy, because of that mutual-annihilation issue. Hangst said the first trick was to combine the particles in a super-cold vacuum setting --- less than 0.5 Kelvin, or -458.8 degrees Fahrenheit. That way, the particles don't instantly jump away and fizzle out. The second trick is to build a magnetic trap to help contain the particles so that they don't instantly decay. And there's a third trick: designing a system capable of verifying that the atoms actually exist. "You must have a trap, and you must be cold, and you must be able to detect that you've done this," Hangst said. [MSNBC]