The Catholic Church, which put Galileo under house arrest for daring to say that Earth orbits the sun, isn't known for easily accepting new scientific ideas. So it came as a surprise when Pope Pius XII declared his approval in 1951 of a brand new cosmological theory—the Big Bang. What entranced the pope was the very thing that initially made scientists wary: The theory says the universe had a beginning, and that both time and space leaped out of nothingness. It seemed to confirm the first few sentences of Genesis.
Eventually, astrophysicists followed the pope's lead, as evidence for the Big Bang became too powerful to ignore. They accepted the notion that the entire observable universe —100 billion galaxies, each stuffed with 100 billion stars, stretching out more than 10 billion light-years in all directions — was once squashed into a space far smaller than a single electron. They bought the idea that the cosmos burst into existence precisely 13.7 billion years ago and has been expanding ever since. But even now, many astrophysicists are still uncomfortable with the implication that the Big Bang marked the beginning of time itself. And the theory has yet to yield a satisfactory answer to a key question: What made the Big Bang go bang?
Cosmologists Paul Steinhardt and Neil Turok have a radical idea that could wipe away these mysteries. They theorize that the cosmos was never compacted into a single point and did not spring forth in a violent instant. Instead, the universe as we know it is a small cross section of a much grander universe whose true magnitude is hidden in dimensions we cannot perceive. What we think of as the Big Bang, they contend, was the result of a collision between our three-dimensional world and another three-dimensional world less than the width of a proton away from ours—right next to us, and yet displaced in a way that renders it invisible. Moreover, they say the Big Bang is just the latest in a cycle of cosmic collisions stretching infinitely into the past and into the future. Each collision creates the universe anew. The 13.7-billion-year history of our cosmos is just a moment in this endless expanse of time.
The hidden dimensions and colliding worlds in the new model are an outgrowth of superstring theory, an increasingly popular concept in fundamental physics. Scientists currently rely on two mutually incompatible theories—relativity and quantum mechanics—to describe the most massive objects in the universe on the one hand and subatomic particles on the other. For nearly a century, theorists have attempted to come up with a single model and a single set of equations that melds the two views of physics. Superstring theory is an evolving attempt to do just that: explain matter, energy, space-time, and the basic forces of nature in one framework.