The key to conquering the solar system is inside a black plastic briefcase on Brad Edwards’s desk. Without ceremony, he pops open the case to reveal it: a piece of black ribbon about a foot long and a half-inch wide, stretched across a steel frame.
Huh? No glowing infinite-energy orb, no antigravity disk, just a hunk of tape with black fibers. “This came off a five-kilometer-long spool,” says Edwards, tapping it with his index finger. “The technology is moving along quickly.”
The ribbon is a piece of carbon-nanotube composite. In as little as 15 years, Edwards says, a version that’s three feet wide and thinner than the page you are reading could be anchored to a platform 1,200 miles off the coast of Ecuador and stretch upward 62,000 miles into deep space, kept taut by the centripetal force provided by Earth’s rotation. The expensive, dangerous business of rocketing people and cargo into space would become obsolete as elevators climb the ribbon and hoist occupants to any height they fancy: low, for space tourism; geosynchronous, for communications satellites; or high, where Earth’s rotation would help fling spacecraft to the moon, Mars, or beyond. Edwards contends that a space elevator could drop payload costs to $100 a pound versus the space shuttle’s $10,000. And it would cost as little as $6 billion to build—less than half what Boston spent on the Big Dig highway project.
Science fiction writers, beginning with Arthur C. Clarke in his 1979 novel, The Fountains of Paradise, and a few engineers have kicked around fantastic notions of a space elevator for years. But Edwards’s proposal—laid out in a two-year $500,000 study funded by the NASA Institute for Advanced Concepts—strikes those familiar with it as surprisingly practical. “Brad really put the pieces together,” says Patricia Russell, associate director of the institute. “Everyone is intrigued. He brought it into the realm of reality.”
“It’s the most detailed proposal I have seen so far. I was delighted with the simplicity of it,” says David Smitherman, technical manager of the advanced projects office at NASA’s Marshall Space Flight Center. “A lot of us feel that it’s worth pursuing.”