Register for an account


Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.


Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

Astronomers Look Inside Meteorites and Find the Sugars Needed for Life

The discovery shows that the organic compounds needed for life can form in lifeless environments, like on asteroids and the early Earth.

By Erika K. CarlsonNovember 22, 2019 7:00 PM
Meteorites Early Earth - NASA
(Credit: NASA’s GSFC Conceptual Image Lab)


Sign up for our email newsletter for the latest science news

Scientists keep finding important molecules for life in meteorites. Now, they can add another one to the list: ribose. It's a type of sugar that plays a vital role in the genetic code of life. 

A team of researchers led by Yoshihiro Furukawa of Tohoku University in Japan recently analyzed meteorite samples and found ribose and other “bioessential” sugars for the first time. The finding offers even more evidence that some of the chemistry necessary for life as we know it can happen naturally outside of Earth. The researchers recently published their results in the Proceedings of the National Academy of Sciences

Life from Space

Scientists want to understand how life arose on Earth. To do that, they must first unravel how organic molecules form and interact in environments without living things. Geologic activity has erased records of much of the chemistry that happened pre-life on Earth. But meteorites — pieces of primitive solar system rocks that have fallen to Earth — preserve chemical records of what the solar system was like in our planet's early days.  

“We rely on meteorites to tell this story,” said Daniel Glavin, an astrobiologist at NASA’s Goddard Space Flight Center and an author of the new study. “They’re basically frozen time capsules.” 

Scientists studying meteorites have already found molecules like amino acids and nucleobases, which are necessary for life. But they'd never seen ribose. This sugar makes up the “backbone” of RNA, a type of molecule responsible for carrying genetic messages in our cells. Furukawa’s team employed careful techniques to ensure they wouldn’t destroy the sugars in their attempts to find them, and were able to uncover ribose and other sugars.

Murchison meteorite
Scientists found some of the same sugars needed to make RNA in this Murchison meteorite. (Credit: Yoshihiro Furukawa)

Cooking up Life

Simply finding these molecules needed for life doesn’t necessarily mean that space rocks were responsible for bringing them to Earth. But it at least shows that there are natural, geologic ways for these organic molecules to form in lifeless environments like on asteroids and the early Earth. 

Figuring out how these molecules could have come together to form the more complex structures necessary for life — like DNA and RNA — is a lingering challenge. But Glavin said finding these essential molecules in meteorites makes him think that finding life outside of Earth might be just a little more likely. 

“Every time we find a new building block in a meteorite, it gives me new hope,” said Glavin. 

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.


Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%


Already a subscriber? Register or Log In