Why the Planets Align: Life Inside Two Differentially Rotating Disks

The Crux
By Jeffrey Wilkerson, Luther College
Feb 4, 2016 4:14 AMNov 20, 2019 1:29 AM
20507135138_6f3ea6d031_k-1024x683.jpg

Newsletter

Sign up for our email newsletter for the latest science news
 

The Milky Way as seen from Colorado. (Credit: Joel Tonyan/Flickr) January was a good month for the planets. Scientists reported theoretical evidence for “Planet 9” and the alignment of Mercury, Venus, Saturn, Mars and Jupiter in the morning sky encouraged many people to wake up extra early to see the show. As you likely know, these planetary alignments occur because the solar system is largely shaped like a flattened disk with the ecliptic being the plane that holds Earth’s orbit around the sun. The orbit of Mercury is inclined 7 degrees relative to the ecliptic, more than twice the inclination of any other planet. That small range of orbital inclinations relative to the ecliptic means that any time it's viewed edge-on, the range of the planets would be very small in the direction perpendicular to Earth's orbit.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group