Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

How Animals Evolved to Live in Low-Oxygen Locales

Discover how efficient oxygen uptake in diving mammals is linked to myoglobin adaptations, enabling incredible underwater survival.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

The leisurely pace of a sloth or koala ambling through the forest can certainly seem desirable, but those habitats and lifestyles aren’t for everyone. For the animals tasked with surviving in some of the more extreme environments on earth, such as the oxygen-deprived ocean, or the thin air of the mountaintops, mastery of efficient oxygen uptake is essential. Several studies that recently appeared in Science shed light on the molecules involved in the abilities of certain animals to push the limits of low-oxygen living.

The fossil record shows that the body shape, limbs, and tails of mammals transitioning from land to water changed drastically to make diving mammals more efficient at hunting, hiding, and surviving in the water. But until last week, scientists didn't know much about the molecular changes that allowed for these diving behaviors. Scott Mirceta, Michael Berenbrink, and their colleagues at the University of Liverpool have not ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles