Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Mind

This Gooey Sponge Is Our Best Model Yet of a Working Brain

D-briefBy Carl EngelkingAugust 12, 2014 11:54 PM
sponge-brain-1024x682.jpg

Newsletter

Sign up for our email newsletter for the latest science news

Researchers constructed functioning 3-D brain tissue using this doughnut-shaped scaffold. Credit: Tufts University

You may have heard someone's memory praised with the saying "You have a brain like a sponge." Well, here’s a twist: a sponge that’s like a brain.

A research team from Tufts University in Boston constructed a functioning 3-D brain model by seeding spongy silk scaffolds with mouse neurons. The researchers’ model was a happy home for cells, since it was a 3-D, layered environment that mimicked the structure of the real thing. It also functioned like the real thing. Researchers say their model will serve as a useful, nondestructive way to study, in real-time, traumatic head injuries such as concussions.

Building a Brain

Growing artificial brain tissue isn’t new: neurons are routinely grown in a 2-D environment such as a petri dish. However their complex branching structure is nearly impossible to replicate in a flat environment. To provide a brain-like matrix, researchers started with six layers of silk harvested from moth cocoons, mimicking the six layers of the human cortex (and dyed so they could easily be differentiated). The pores in the layers of scaffolding were varied in size and orientation to simulate the structure of the human cortex. Researchers then seeded this structure with thousands of cortical neurons harvested from rats. Within days, the neurons started growing, forging connections that spanned the model’s layers – just like they would in a real brain. They also showed similar qualities as neurons in an intact brain, including their electrical activity and responsiveness. Furthermore, the 3-D structure improved the transport of oxygen and nutrients to the cells, so the cells survived about 9 weeks – longer than other models. Researchers believe they could extend the life of their model by electrically stimulating the tissue to simulate a real-world environment.

Brain Bruising

After building their model, researchers dropped an 11-gram weight from various heights to injure the brain and assess its activity in real time – something you can’t do with humans and animals. The brain tissue’s physiological response to trauma was consistent with past research, proving its efficacy as a model. Researchers published their findings

Monday in Proceedings of the National Academies of Science. Going forward, researchers hope to incorporate other types of brain cells in their model to better mimic the brain’s complexity. Researchers also said scaffolds could be shaped like specific parts of natural brains for an accurate simulation. As to how long it would be before you could grow your own pet brain by just adding water, however – no word yet.

3 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In