We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

When Life Gives You Spider Silk, Make Artificial Skin

By Joseph Castro
Aug 12, 2011 12:46 AMNov 20, 2019 4:22 AM


Sign up for our email newsletter for the latest science news

Left: the silk mesh 1 day after being seeded with fibroblast cells. Right: 4 days after seeding.

What’s the News: People have long known that spider silk has many practical uses, even in the medical field; Ancient Greeks, for example, employed the strong, flexible fiber as bandages

. But the clinical uses of spider silk may stretch beyond that: scientists may someday be able to use the silk to help create artificial skin, according to new research out of the Hannover Medical School in Germany. In the study, published recently in the journal PLoS One

, researchers successfully grew tissue-like skin on a mesh frame of silk harvested from golden silk orb-weaver spiders

. What’s the Context:

  • Adult skin is made up of two tissue layers: the epidermis and dermis. The epidermis is the outermost layer of the skin, which provides a sort of barrier against the environment. Below this is the dermis, a layer of tissue that provides strength, nourishment, and resilience to the epidermis.

  • Effective artificial skin (for patients that need skin grafts, such as burn victims) needs to replace both layers of skin and be able to degrade over time as new skin grows in. Recent techniques have created matrices for artificial skin from collagen and synthetic polymers like poly(lactic-co-glycolic acid), but these materials have a low mechanical strength and don’t degrade quick enough, according to the researchers of the current study. Spider silk, on the other hand, is strong, biodegradable, and does not produce a harmful immune response.

How the Heck:

  • Tissue engineer Hanna Wendt and her team began by harvesting silk from the spiders—they stroked the arachnids’ silk glands and spooled the silk fibers that came out. They weaved the dragline silk onto a rectangular steel frame, creating a thin, easy-to-handle scaffold that they then sterilized with steam.

  • With the right amount of nutrients, warmth, and air, the researchers grew tissue-like skin onto the silk weave. They started by seeding their mesh constructs with fibroblast cells, which produce the extracellular matrix of the dermis. After cultivating the fibroblasts for two weeks, the team added in keratinocytes, the predominate cells of the epidermis. The cells eventually created a bilayer skin model, with tissue-like patterns resembling epidermis and dermis.

Not So Fast:

  • The current setup is not ready for widespread medical use. One major issue is the difficulty of harvesting the necessary amounts of spider silk from actual spiders. "Synthetic silk fibers providing the same mechanical- and cell culture properties will be needed," Wendt told LiveScience.

  • Another problem is the use of a stainless steel frame, which has a fixed structure and cannot be absorbed by the body. As the researchers point out in their paper, further experiments could yield “an absorbable frame or a knitted spider silk matrix” to fix this issue.

[via LiveScience


Image courtesy of H. Wendt,

PLoS One

1 free article left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

1 free articleSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!


Already a subscriber?

Register or Log In

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Our List

Sign up for our weekly science updates.

To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.