Of association & evolution

Gene Expression
By Razib Khan
Jan 10, 2011 12:23 AMNov 20, 2019 4:10 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

Two of the main avenues of research which I track rather closely in this space are genome-wide association studies (GWAS), which attempt to establish a connection between a trait/disease and particular genetic markers, and inquiries into the evolutionary parameters which shape the structure of variation within the human genome. Often with specific relation to a particular trait/disease. By evolutionary parameters I mean stochastic and deterministic forces; mutation, migration, random drift, and natural selection. These two angles are obviously connected. Both focus on phenomena which are proximate in relation to the broader evolutionary principle: the ultimate raison d'être, replication. Stochastic forces such as random genetic drift reflect the error of sampling of genes from generation to generation during the process of reproduction, while adaptation through natural selection is an outcome of the variation of reproductive fitness as a function of variation of heritable traits. Both of these forces have been implicated in diseases and traits which come under the purview of GWAS (and linkage mapping). GWAS are regularly in the news because of their relevance in identifying the causal genetic factors for specific diseases. For example, schizophrenia. But they can be useful in a non-disease context as well. Human pigmentation is a character whose genetic architecture has been well elucidated thanks to a host of recent association studies. The common disease-common variant has yielded spectacular results for pigmentation; it does seem a few common variants are responsible for most of the variation on this trait. But this has been the exception rather than the rule. One reason for this disjunction between the promise of GWAS and the concrete tangible outcomes is that many traits/diseases of interest may be polygenic and quantitative. This implies that variation in phenotype is controlled by variation across many genes, and, that the variation itself exhibits gradual continuity (a continuity which can be modeled as a normal distribution of values). The power of GWAS to detect correlated variation across genes and traits of small marginal effect is obviously limited. In contrast, it seems that about half a dozen genes can explain most of the between population variation in pigmentation. One SNP is able to account for 25-40% of the difference in shade between Europeans and Africans. This SNP is fixed in Europeans, nearly absent in Africans and East Asians, and segregating in both ancestral and derived variants in groups such as South Asians and African Americans. In contrast, though traits such as schizophrenia and height are substantially heritable, much of the variation at the population level of the trait is explainable by variation in genes. The effect size at any given locus may be small, or the variation may be accumulated through the sum of larger effect variants of low frequency. In other words, many common variants of small effect, or numerous distinctive rare variants of large effect.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group