Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Hauling Out the Quantum Frigidaire: Can Quantum Mechanics Suck the Heat From Computing?

Discover how quantum mechanics and computing could lead to computations that cool computers instead of generating heat.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

What's the News: Anyone who has had their thighs baked by a laptop knows that computing releases heat. And it's more than a common-sense maxim: physicists have shown that heat released by information processing is bound by a physical law, where a bit of information processed must cause a corresponding rise in temperature. But could quantum mechanics allow computations that actually cool computers down? In a recent Nature paper

, researchers describe how this paradox is possible. How the Heck:

In this paper, the team describes how, using the quantum mechanical property of entanglement, an observer can actually drain heat from a system while deleting information.

How, you say? It all comes down to a question of entropy. The second law of thermodynamics states that the entropy of a system is always increasing or remaining the same, but never decreasing. And the way we usually experience it, entropy is heat. ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles