Just as earthquakes help scientists learn about the interior of our planet, the way a star’s surface oscillates yields clues to its internal structure and other key characteristics. Researchers with the Kepler Asteroseismic Investigation are putting that concept to work on a grand scale, monitoring the surface vibrations of thousands of stars to learn their ages, sizes, and inner dynamics.
The Kepler spacecraft’s primary mission is hunting for new planets by tracking the brightness of more than 100,000 stars, watching for the telltale dimming that occurs when an orbiting planet happens to pass in front of its sun. Since seismic oscillations alter the surface area of the star, measurably changing its brightness, the data Kepler collects also reveal these stellar vibrations.
Seismic waves form as a result of turbulent convection in the roiling stellar interior. Those waves eventually hit the star’s surface layer, like a clapper ringing a bell. The ...