Trapping Light

This is the future, and it moves at 186,000 miles per second.

Apr 1, 2001 6:00 AMNov 12, 2019 4:52 AM
apr01_trap5.jpg
A face-centered cubic, above, is the ideal crystal for capturing light. But it took scientists 14years to make one that worked.Photo illustration by Jana León | NULL

Newsletter

Sign up for our email newsletter for the latest science news
 

One day in the spring of 1987, Eli Yablonovitch and Sajeev John got together for a lunch they both remember well. The two researchers had never met. They got in touch after discovering that each had submitted a paper to Physical Review Letters based on the same novel idea— an idea now considered groundbreaking.

Yablonovitch was an electrical engineer at Bell Communications Research, or Bellcore, in Red Bank, New Jersey. He was already known for his work refining a laser that would become a mainstay of fiber-optic communications. John was a promising theoretical physicist; he had recently joined the faculty at Princeton University. When they sat down together, in the civilized surroundings of a Princeton dining hall, the sociobiological dynamic was that of two large dogs sniffing each other.

"The conversation was lively," recalls John.

"The meeting was lively, but it was also a little tense," Yablonovitch says. Both men knew they were onto something big, though each concluded his paper with only modest predictions. Yablonovitch said the idea "may someday have a role to play in the study of semiconductor lasers." John's paper said only that it "may lead to a number of useful device applications." Both conclusions now look like massive understatements. These days hundreds of papers come out of dozens of labs all over the world citing those 1987 papers. Back then, however, Yablonovitch and John were alone. Being a lone genius can be gratifying. But having a rival can be reassuring: It suggests you're not a crazy lone genius.

The two men finished lunch on amicable terms. They also agreed on a name for their idea: It should be called a photonic band gap. Their idea has since been realized in the form of photonic crystals, which could prove as far-reaching an innovation as semiconductors. Photonic crystals have the regular lattice structure of natural crystals. They look a bit like cages, and that's just what they are. They're cages that trap photons— particles of light that move at 186,000 miles per second— like fireflies in a jar.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group