Fourteen billion years ago, give or take an aeon, the Big Bang created the universe—or did it? If by universe you mean an abysmally black void with no stars, galaxies, planets, or the slightest promise of life, then the Big Bang's your baby. But if you mean the starry cosmos we see around us today, a universe that includes at least one planet with life, the Big Bang was a bust. For 100 million years after time began, the universe was less interesting than a mud puddle. Only a handful of elements—mostlyhydrogen and helium, along with faint traces of lithium and beryllium—ricocheted through fathomless, unending gloom. Had anyone been around at the time to bet on the future, the smart money would have been on more of the same: darkness, emptiness, death. Yet improbably, miraculously, the universe—the ultimate dark horse—beat those odds. It was reborn. A 100-million-year-long night ended when clouds of hydrogen collapsed and ignited. In the blast furnaces of the first stars, atoms were crushed, burned, and transmuted into more complex particles, like the carbon in the paper of this page or in the hand that's holding it. That moment—when the universe first lit up—was nothing less than a second creation, the one that really counts. Astronomers, however, haven't yet been able to see that cosmic dawn, because it's well beyond the range of any existing telescope. "Ah, but a man's reach should exceed his grasp," wrote Robert Browning, "or what's a heaven for?" Or, as astrophysicist Tom Abel might say, "What's a computer for?" Abel has not extended our grasp to heaven, but he has reached out to the time and place when light transfigured a murky universe. He and two colleagues did it with software, using an astonishing computer program to resurrect a long-ago epoch dominated by giant balls of flaming hydrogen hundreds of times bigger than the sun and millions of times brighter. They were the first stars, unlike any in the universe today. They created everything necessary for all future stars, as well as the essential elements of life as we know it on Earth. These fireballs blazed for about 3 million years and then died in a chorus of detonations, long before anything we now see in the sky existed. And their death created life. Parts of those earliest giant stars are in our blood, bones, and skin. It may even be that a bit of the stardust of which the Earth is made was shot into the void by the explosions that ripped apart the earliest stars.