# Pollock's Fractals

## That isn't just a lot of splattered paint on those canvases, it's good mathematics

Nov 1, 2001 12:00 AMApr 11, 2023 5:50 PM

In 1949, when Life magazine asked if Jackson Pollock was "the greatest living painter in the United States," the resulting outcry voiced nearly half a century of popular frustration with abstract art. Some said their splatter boards were better than Pollock's work. Others said that a trained chimpanzee could do just as well. A Pollock painting, one critic complained, is like "a mop of tangled hair I have an irresistible urge to comb out."  Yet Pollock's reputation has outlived his detractors. A retrospective of his work several years ago at the Museum of Modern Art in New York City drew lines around the block, and an award-winning film of his life and art was released at the end of 2000. Apparently "Jack the Dripper" captured some aesthetic dimension—some abiding logic in human perception—beyond the scope of his critics. That logic, says physicist and art historian Richard Taylor, lies not in art but in mathematics—specifically, in chaos theory and its offspring, fractal geometry.  Fractals may seem haphazard at first glance, yet each one is composed of a single geometric pattern repeated thousands of times at different magnifications, like Russian dolls nested within one another. They are often the visible remains of chaotic systems—systems that obey internal rules of organization but are so sensitive to slight changes that their long-term behavior is difficult to predict. If a hurricane is a chaotic system, then the wreckage strewn in its path is its fractal pattern.  Some fractal patterns exist only in mathematical theory, but others provide useful models for the irregular yet patterned shapes found in nature—the branchings of rivers and trees, for instance. Mathematicians tend to rank fractal dimensions on a series of scales between 0 and 3. One-dimensional fractals (such as a segmented line) typically rank between 0.1 and 0.9, two-dimensional fractals (such as a shadow thrown by a cloud) between 1.1 and 1.9, and three-dimensional fractals (such as a mountain) between 2.1 and 2.9. Most natural objects, when analyzed in two dimensions, rank between 1.2 and 1.6.

Physicist Richard Taylor was on sabbatical in England six years ago when he realized that the same analysis could be applied to Pollock's work. In the course of pursuing a master's degree in art history, Taylor visited galleries and pored over books of paintings. At one point in his research, he began to notice that the drips and splotches on Pollock's canvases seemed to create repeating patterns at different size scales—just like fractals.  Months later, back in his lab at the University of New South Wales in Sydney, Australia, Taylor put his insight to the test. First he took high-resolution photographs of 20 canvases dating from 1943 to 1952. (Pollock moved away from drip painting in 1953.) Then he scanned the photographs into a computer and divided the images into an electronic mesh of small boxes. Finally, he used the computer to assess and compare nearly 5 million drip patterns at different locations and magnifications in each painting—from the length of a full canvas (up to four yards in some cases) to less than a tenth of an inch. The fractal dimensions of Pollock's earlier drip paintings, Taylor concluded, correspond closely to those found in nature. A 1948 painting entitled Number 14, for instance, has a fractal dimension of 1.45, similar to that of many coastlines.  A skeptic might suggest that the effect is coincidental. But Pollock clearly knew what he was after: The later the painting, the richer and more complex its patterns, and the higher its fractal dimension. Blue Poles, one of Pollock's last drip paintings, now valued at more than \$30 million, was painted over a period of six months and boasts the highest fractal dimension of any Pollock painting Taylor tested: 1.72. Pollock was apparently testing the limits of what the human eye would find aesthetically pleasing.

1 free article left
Want More? Get unlimited access for as low as \$1.99/month

1 free articleSubscribe
Want more?

Keep reading for as low as \$1.99!

Subscribe

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List