Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

New Math for Designer Wrinkles

Equations calculate how a rubbery material deforms under pressure.

By Shannon PalusNovember 26, 2014 6:00 AM
wrinkles-horizontal.jpg
Surefire wrinkles: New mathematics lets scientists predict how squeezing a rubbery material causes its surface to deform. First, the surface forms wavelike wrinkles (left), then loose folds (middle) and, finally, tight creases (right). | Annt/shutterstock; Kyung-Suk Kim and Mazen Diab/Brown University

Newsletter

Sign up for our email newsletter for the latest science news

“Folds are everywhere,” says Kyung-Suk Kim, an engineer at Brown University. They’re in the wings of insects, the surface of our brains, the fabric of umbrellas, even the crust of the Earth.

In June, Kim’s team reported the first general mathematical description of how the surfaces of common rubbery materials fold. Imagine laying a sheet of paper flat on a table, then squeezing it together from both ends. First, it begins to wrinkle: Little waves form on the surface, with rounded peaks and U-shaped troughs. As you squeeze it more, the wrinkles accumulate, and the U-shaped troughs compress until two tips of each U touch. With still more force, the lower part of each U collapses, forming creases.

By analyzing these states — called “ruga” states from the Latin word for “wrinkle” — Kim and postdoc Mazen Diab developed a series of customizable equations that allows researchers to calculate, from the stiffness of a material, how much it must be compressed to wrinkle, fold or crease. The equations also predict how hard they must pull the sheet to unfurl the material.

The new equations could shed light on how brain tissue compresses during a head injury, as well as enable a vast array of engineering applications, including creating hairpin-shaped crinkles in thin materials to control liquids on tiny devices; building wearable gadgets that stretch and wrinkle just so; making ultrathin electronics that are resistant to harmful creases; and more. To control folds is to control the critical nooks and crannies of the world.

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In