Neutrinos: Ghosts of the Universe

Neutrinos and their weird subatomic ways could help us understand high-energy particles, exploding stars and the origins of matter itself.

By Dolly Setton
Jul 31, 2014 12:00 AMMay 21, 2019 5:30 PM
Neutrinos: Ghosts of the Universe
A colorized image shows the tracks of neutrinos as they zoom into a chamber. Illustration based on Fermilab Bubble Chamber image.

Newsletter

Sign up for our email newsletter for the latest science news
 

Why, after millions of years of steadily lighting the cold darkness, does a supergiant star suddenly explode in a blinding blaze of glory brighter than 100 billion stars? What exotic objects in deep space are firing out particles at by far the highest energies in the universe? And perhaps most mind-bending, why does the universe contain any matter at all? These mysteries have vexed astrophysicists and particle physicists for decades. The key to solving all three deep conundrums is itself one of the greatest enigmas of physics: the neutrino.

The universe is awash in these peculiar, nearly massless, subatomic particles. Created in tremendous numbers right after the Big Bang, and constantly churned out in stars and other places by radioactive decay and other reactions, trillions of these ghostly particles sail right through stars and planets, including our own.

Carrying no electrical charge, neutrinos are attracted neither to protons nor electrons, so they don’t interact with electromagnetic fields. They also don’t feel a powerful force that operates on tiny scales, known simply as the strong force, which binds protons and neutrons together in an atom’s nucleus.

Neutrinos are more aloof than supermodels, rarely interacting meaningfully with one another or with anything else in the universe. Paradoxically, it is their disengaged quality that earns them a crucial role both in the workings of the universe and in revealing some of its greatest secrets. 

Neutrino physics is entering a golden age. As part of one experiment, neutrinos have recently opened a new window on high-energy sources in deep space, such as black holes spewing out particles in beams trillions of miles long.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group