NCBI ROFL: This just in: best paper title of the year!

Discoblog
By ncbi rofl
Feb 22, 2011 10:00 PMNov 19, 2019 8:24 PM

Newsletter

Sign up for our email newsletter for the latest science news
 

Chemical processes in the deep interior of Uranus. "The unusual magnetic fields of the planets Uranus and Neptune represent important observables for constraining and developing deep interior models. Models suggests that the unusual non-dipolar and non-axial magnetic fields of these planets originate from a thin convective and conducting shell of material around a stably stratified fluid core. Here, we present an experimental and computational study of the physical properties of a fluid representative of the interior of Uranus and Neptune. Our electrical conductivity results confirm that the core cannot be well mixed if it is to generate non-axisymmetric magnetic fields. The molecular dynamics simulations highlight the importance of chemistry on the properties of this complex mixture, including the formation of large clusters of carbon and nitrogen and a possible mechanism for a compositional gradient, which may lead to a stably stratified core." via @edyong209

Photo: flickr/John Manyjohns

Related content: Discoblog: NCBI ROFL: Ridiculous titles WTF is NCBI ROFL? Read our FAQ!

1 free article left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

1 free articleSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group