Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

NCBI ROFL: The physics of penguin huddling.

DiscoblogBy ncbi roflNovember 4, 2011 3:38 AM
penguin_huddle-e1320359927933.png

Newsletter

Sign up for our email newsletter for the latest science news

Coordinated movements prevent jamming in an Emperor penguin huddle. "For Emperor penguins (Aptenodytes forsteri), huddling is the key to survival during the Antarctic winter. Penguins in a huddle are packed so tightly that individual movements become impossible, reminiscent of a jamming transition in compacted colloids. It is crucial, however, that the huddle structure is continuously reorganized to give each penguin a chance to spend sufficient time inside the huddle, compared with time spent on the periphery. Here we show that Emperor penguins move collectively in a highly coordinated manner to ensure mobility while at the same time keeping the huddle packed. Every 30-60 seconds, all penguins make small steps that travel as a wave through the entire huddle. Over time, these small movements lead to large-scale reorganization of the huddle. Our data show that the dynamics of penguin huddling is governed by intermittency and approach to kinetic arrest in striking analogy with inert non-equilibrium systems, including soft glasses and colloids."

Bonus quote from the Discussion in the full text:

"In addition, huddle movements allow separate smaller huddles to merge into larger clusters. Such merging is analogous to the merging of magnetic domains as the thermodynamic temperature is decreased towards the Curie point, the temperature above which a magnet loses its magnetism, or analogous to a phase transition in a disordered material that is brought towards a critical point. This is an essential process in condensed matter physics, penguins included."

penguin_article.png

Related content: Discoblog: NCBI ROFL: How hard can I snuggle my penguin without waking him? Discoblog: NCBI ROFL: Penguins on treadmills. Need we say more? Discoblog: NCBI ROFL: The sea lion solution to sexual harrassment: keep fewer males around. WTF is NCBI ROFL? Read our FAQ!

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In