Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

Lab-Grown Black Holes

By Kathy A SvitilOctober 1, 2000 5:00 AM

Newsletter

Sign up for our email newsletter for the latest science news

Physicists who study black holes— collapsed objects whose gravity is so potent not even light can escape— can't get anywhere close to their deadly quarry. So they are salivating at the news that two physicists, Ulf Leonhardt of the University of St. Andrews in Scotland and Paul Piwnicki of the Royal Institute of Technology in Stockholm, have uncovered a way to mimic a black hole with a small, safe vortex of cold atoms.

The key to lab-grown black holes, no bigger than raindrops, is to spin the atoms faster than the speed of light. Then, like swimmers caught in a violent whirlpool, passing beams of light get sucked into the current. Normally it would be impossible to move the atoms quickly enough. Last year, however, physicists at Harvard University found that light slows tremendously when it travels through a unique, low-temperature state of matter, called a Bose-Einstein condensate. The Harvard team braked light's speed to just 38 miles per hour.

Leonhardt and Piwnicki think a batch of frigid rubidium atoms could push the process further, until light crawls along at about an inch per second. "Then the vortex would have to spin at several feet per second, which is certainly possible. Optical black holes could be just a couple of years away," Leonhardt says. These atomic swirls will let the researchers test ideas about how black holes swallow matter and bend space, as predicted by Einstein's theory of relativity.

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In