Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

The Sciences

Autonomously Moving Colloidal Objects that Resemble Living Matter

Cosmic VarianceBy Sean CarrollNovember 18, 2010 7:01 PM

Newsletter

Sign up for our email newsletter for the latest science news

That's the name of a new paper by Akihisa Shioi, Takahiko Ban, and Youichi Morimune. Abstract:

The design of autonomously moving objects that resemble living matter is an excellent research topic that may develop into various applications of functional motion. Autonomous motion can demonstrate numerous significant characteristics such as transduction of chemical potential into work without heat, chemosensitive motion, chemotactic and phototactic motions, and pulse-like motion with periodicities responding to the chemical environment. Sustainable motion can be realized with an open system that exchanges heat and matter across its interface. Hence the autonomously moving object has a colloidal scale with a large specific area. This article reviews several examples of systems with such characteristics that have been studied, focusing on chemical systems containing amphiphilic molecules.

The journal is called Entropy, which I love. The paper discusses a variety of different systems that can travel, wiggle around, and respond to stimuli in ways that resemble living organisms. Not exactly building life in a test tube, but the boundary grows increasingly blurry.

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In