Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

#26: How Matter Defeated Antimatter

The Big Bang theory problem raises questions about the matter and antimatter imbalance, revealed by B meson particle oscillation studies.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

The Big Bang theory has a Big Problem. The leading models of cosmology imply that the universe should have begun with equal quantities of matter and antimatter. But when the two meet, they annihilate each other, so an equal balance would have yielded an empty cosmos. In May, physicists at the Tevatron particle accelerator in Illinois singled out a strange particle that could help explain the conundrum.

Studying nearly eight years’ worth of high-speed smashups between protons and antiprotons, Guennadi Borissov of Lancaster University in the U.K. and other members of the Tevatron team focused on the B meson, a short-lived particle that emerges from the collisions. During its brief life, this particle rapidly oscillates between matter and antimatter: One moment it’s a B meson, the next it’s an anti-B meson. This constant wavering should create just as many anti-B mesons as B mesons, but the physicists discovered a clear ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles