Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

The Neural Networks That 'Grow' Castles, Temples and Caterpillars in Minecraft

With the right rules, neural networks can learn to grow more or less anything, say computer scientists.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

In the late 1960s, the English mathematician John Conway began experimenting with a strange form of computer known as a cellular automaton. This device consists of a grid of squares that turn black or white depending on the color of the squares around them.

The computation proceeds in rounds. In each round, the automaton updates the color of each square based on the color of its neighbors according to a set of specified rules. The resulting pattern then becomes the starting point for the next round of computation and so on.

Conway found to his surprise that simple rules can produce remarkably complex behaviors. Some patterns even moved across the grid, rather like living things. Conway called his approach the Game of Life and others have since discovered patterns that perform calculations or are even capable of reproducing themselves completely.

That has raised all kinds of questions about how cellular ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles