Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Technology

Physicists Find New Way to Store Quantum Information in Impure Diamonds

Newsletter

Sign up for our email newsletter for the latest science news

Physicists have worked out a new method of storing information in the quantum states of atoms in diamond crystals. The scientists linked the spin of individual nitrogen atoms in the diamond—impurities at the jewelry counter, but boons in the physics lab—to the spin of nearby electrons. They could form a quantum link between the spin of the nitrogen atom and the spin of a nearby electron, letting the electron store information more stably than if it were spinning on its own. How the Heck:

diamonds-425x318.jpg

What’s the News:

  • When a nitrogen is next to an empty spot in a diamond’s carbon framework, it lets off an extra electron, leaving that electron free to have its quantum played around with.

  • Using what they call “intense microwave fields” [PDF], the physicists were able to link the spin of a nitrogen atom to a neighboring electron, a pairing sparked by magnetic fields.

What’s the Context:

  • Scientists have been looking at diamonds—with and without nitrogen impurities—as a quantum computing material for several years, in part because it can store quantum memory at room temperature, not the far-below-freezing temps required by some other materials.

  • Some have even proposed the idea of diamond supercomputers, which would store millions of times as much data as today’s machines.

  • One hurdle in quantum computing is getting the information to last long enough to use it. In the recent study, the nuclear spin stayed coherent for more than a millisecond—enough time for a ten petaflop supercomputer to do ten trillion operations.

Not so Fast:

  • Don’t start rooting around in your hard drive for a rock just yet; diamond-based quantum computing is still a long way off.

Reference: “Quantum control and nanoscale placement of single spins in diamond.” David D. Awschalom, invited talk, American Physical Society March Meeting 2011

Image: Flickr / Swamibu

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In