Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Technology

Nerve Cells Reach Out and Touch Someone: Electronic Components

80beatsBy Patrick MorganMarch 24, 2011 7:44 PM

Newsletter

Sign up for our email newsletter for the latest science news

: Scientists have discovered a new technique for linking semiconducting tubes with mouse nerve cell tendrils: They let the cells do the work for them. After creating biologically friendly semiconductor tubes, they found that nerve cells' tendril-like axons didn't shy away. "They seem to like the tubes," University of Wisconsin-Madison biomedical engineer Justin Williams told Science News. This represents a step toward new technology involving computer-brain networks. How the Heck: The trick was to create tubes of layered germanium and silicone (which insulate the nerve's electrical signals) that were big enough for the nerve cell's threadlike projections to enter but too small for the cell body: When seeded with live mouse nerve cells, the only way the cells could interact with the tubes was be sending tendrils into it---which is just what they did. What's the Context:

nerve.jpg

What's the News

Not So Fast: The researchers don't yet know whether the connected nerves are actually talking with each other. Next Up: Now they want to hook the tubes to voltage sensors that can "listen" to the cells communicating with each other. If successful, this could lead to new drug tests where doctors can actually measure how nerve cells respond to certain types of drugs, leading to further innovations in the battle against neurological diseases like Parkinson's. Image: Minrui Yu, University of Wisconsin–MadisonReference: "Semiconductor Nanomembrane Tubes: Three-Dimensional Confinement for Controlled Neurite Outgrowth" Minrui Yu et al. DOI: 10.1021/nn103618d

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In