Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Monkeys Use a Electronic Brain Interface to Move Paralyzed Limbs

Explore how a brain-machine interface helped monkeys control paralyzed muscles using their own neuronal signals, paving the way for paralysis treatments.

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

In a new study, researchers attached electrodes to individual neurons in monkeys' brains and then rerouted those neuronal signals through a brain-machine interface, which converted them into electrical signals that controlled the monkeys' own paralyzed muscles. Researchers say this roundabout feat of bioengineering could eventually lead to new treatments and prosthetics for paralyzed people.

The implant exploits the fact that even when the neural connection between a brain region and the muscles it controls is severed or damaged by, say, a stroke or spinal injury, the controlling neurons remain active. For example, people living with quadriplegia who try to move their arm still generate arm-movement signals in the motor cortex of their brain, even after several years of paralysis [New Scientist].

The new study is the first to send the signals back to the user's own muscles, as opposed to related research in which the signals are fed into electronic ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles