Stay Curious

SIGN UP FOR OUR WEEKLY NEWSLETTER AND UNLOCK ONE MORE ARTICLE FOR FREE.

Sign Up

VIEW OUR Privacy Policy


Discover Magazine Logo

WANT MORE? KEEP READING FOR AS LOW AS $1.99!

Subscribe

ALREADY A SUBSCRIBER?

FIND MY SUBSCRIPTION
Advertisement

Revisiting Primordial Gravitational Waves

Once again, astronomers may be close to unraveling one of the universe’s oldest mysteries. And this time, they’ve learned from their mistakes.

Fermilab scientists inspect light detectors destined for the upgraded South Pole Telescope.Bradford Benson/University of Chicago/Fermilab

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

Stories about science often suggest a process of steady advancement — a direct path from hypothesis to revelation. Yet it rarely happens that way. The road to progress is typically strewn with false starts, wrong turns and other miscues — as a group of astronomers and physicists known as the BICEP2 collaboration recently found out.

In March 2014, they announced to the world that their small telescope at the South Pole had uncovered possible signs of gravitational waves produced within a trillionth of a trillionth of a trillionth of a second of the Big Bang — potentially opening a window into a new regime of physics. The tentative findings garnered international headlines. But later that year, new data showed that the signal they’d seen was primarily due to dust in our galaxy rather than to gravitational waves from the cosmic dawn.

The experience was disappointing for the team behind BICEP ...

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

0 Free Articles