The Renaissance man: how to become a scientist over and over again

Not Exactly Rocket Science
By Ed Yong
Jun 8, 2011 5:00 PMApr 6, 2023 6:49 PM

Newsletter

Sign up for our email newsletter for the latest science news
 

Erez Lieberman Aiden is a talkative witty fellow, who will bend your ear on any number of intellectual topics. Just don’t ask him what he does. “This is actually the most difficult question that I run into on a regular basis,” he says. “I really don’t have anything for that.” It is easy to understand why. Aiden is a scientist, yes, but while most of his peers stay within a specific field – say, neuroscience or genetics – Aiden crosses them with almost casual abandon. His research has taken him across molecular biology, linguistics, physics, engineering and mathematics. He was the man behind last year's “culturomics” study, where he looked at the evolution of human culture through the lens of four per cent of all the books ever published. Before that, he solved the three-dimensional structure of the human genome, studied the mathematics of verbs, and invented an insole called the iShoe that can diagnose balance problems in elderly people. “I guess I just view myself as a scientist,” he says. His approach stands in stark contrast to the standard scientific career: find an area of interest and become increasingly knowledgeable about it. Instead of branching out from a central speciality, Aiden is interested in ‘interdisciplinary’ problems that cross the boundaries of different disciplines. His approach is nomadic. He moves about, searching for ideas that will pique his curiosity, extend his horizons, and hopefully make a big impact. “I don't view myself as a practitioner of a particular skill or method,” he tells me. “I’m constantly looking at what’s the most interesting problem that I could possibly work on. I really try to figure out what sort of scientist I need to be in order to solve the problem I'm interested in solving.” It’s a philosophy that has paid dividends. At just 31 years of age, Aiden has a joint lab at MIT and Harvard. In 2010, he won the prestigious $30,000 MIT-Lemenson prize, awarded to people who show “exceptional innovation and a portfolio of inventiveness”. He has seven publications to his name, six of which appeared the world’s top two journals - Nature and Science. His friend and colleague Jean-Baptiste Michel says, “He's truly one of a kind. I just wonder about what discipline he will get a Nobel Prize in!” When I meet Aiden in Harvard, he is dressed casually in a jersey, chinos and trainers. He talks quickly but eloquently, at once relaxed and in deep concentration. The door to his office, lettered with “Aiden Lab”, opens into a room that feels more like a lounge. In place of benches and stools, there is a comfortable sofa, armchairs, several computers and a big TV. Aside from a pile of snacks, the space is notably Spartan. There are no photos on the walls. Three rows of shelves are largely empty. The desks are unburdened. It is as if the room, like the man himself, is uncluttered by the past. Rather than specialising in any one area, Aiden takes the opposite tack. He naturally gravitates to problems that he knows little about. “The reason is that most projects fail,” he says. “If the project you know a lot about fails, you haven’t gained anything. If a project you know relatively little about fails, you potentially have a bunch of new and better ideas.” And Aiden has a habit of using his failures as springboards for success.

*****

In 2005, Aiden was fascinated by the way we make antibodies. Antibodies are all very similar, but their tips – the bits that recognise invaders – are extremely variable. These are created through a genetic pick-and-mix – genes from three groups, each with many different members, are united together in one of a 100 million different combinations. These vast permutations provide the variety we need to counter a legion of threats from bacteria, viruses, parasites, tumour cells and more. “The immune system constantly creates genes on the fly that are specific to the things that show up in the body. It’s amazing,” says Aiden. His goal was ambitious but simple: catalogue these genes and sequence the human immune system. He failed. “The problem is that all the genes are very, very similar,” he says. Sequencing genes isn’t like reading text from start to finish. It’s more like looking at isolated fragments of sentences, and trying to join them into the original narrative. If the sentences all contain roughly the same words, that task becomes very difficult. “At a certain point, we just realised that the data just wasn’t good enough. That was a disaster – it was 85% of my time for 18 months. That was an epic failure.” But it was not a wasted opportunity. In 2007, Aiden’s interest in antibodies took him to an immunology conference, where he accidentally went into the wrong talk. In that unplanned meander, Aiden found the inspiration that would lead him to solve the three-dimensional structure of the human genome

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.