Some Tiny Raindrops Land Moving Faster Than Their Terminal Velocity

80beats
By Allison Bond
Jun 23, 2009 12:45 AMJul 12, 2023 6:57 PM

Newsletter

Sign up for our email newsletter for the latest science news
 

Who knew this spring's soggy weather fell under the umbrella of physics research? Scientists found that when raindrops fall faster than physics predicts, the drops have actually broken into smaller droplets, according to a study in the journal Geophysical Research Letters. And because weather services gauge rainfall based on the velocity at which droplets fall--conventional wisdom holds that large drops should hit the ground at a higher speed than do smaller droplets--these results could improve the way we predict weather. All falling objects have a so-called terminal velocity, a speed they can't surpass due to air resistance. Therefore, larger drops generally should fall faster because their heftier size helps them power through air resistance more easily than little drops. (In the extreme case, think of fog: water droplets so small they don't fall at all.) But data showing small drops sometimes impact the ground at the same speed as larger ones showed this conventional wisdom was wrong, and has puzzled scientists for years. To solve the mystery, the researchers collected a shower of data using optical equipment over a period of several years.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2025 LabX Media Group