Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Planet Earth

One more reason to fear fire ants: they build tunnels to maximize speed in their nests.

158543323_94a23b69a1.jpg

Newsletter

Sign up for our email newsletter for the latest science news

Photo: flickr/AZAdamHow fast can fire ants swarm out of their nests to come terrorize your worst nightmares, you ask? Nine body lengths per second. Nine! If I were to travel at nine body lengths per second, I would be zooming along at well over 30 mph. And this is not on an open road, it is in the complex, crowded, and often vertical tunnels inside the nest. So how do they do it without falling? According to this study, they not only use all of their appendages (including their antennae!) to brace themselves on their tunnel walls to prevent falling when they slip, but they also build their tunnels at the exact diameter that allows them to do this most effectively! (Be sure to check out the video below of the ants catching themselves after the researchers shake them to make them fall.)Climbing, falling, and jamming during ant locomotion in confined environments "Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However, a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain insight into how animals move within confined spaces, we study the locomotion of the fire ant Solenopsis invicta, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to body length, L = 3.5 ± 0.5 mm. Ants can move rapidly (> 9 bodylengths per s) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls, which facilitate rapid slip-recovery during ascending and descending climbs. To examine the limits of slip-recovery in artificial tunnels, we perform perturbations consisting of rapid downward accelerations of the tunnels, which induce falls. Below a critical tunnel diameter, Ds = 1.31 ± 0.02 L, falls are always arrested through rapid interaction of appendages and antennae with tunnel walls to jam the falls. Ds is comparable to the size of incipient nest tunnels (D = 1.06 ± 0.23 L), supporting our hypothesis that fire ants construct environments that simplify their control task when moving through the nest, likely without need for rapid nervous system intervention." Bonus supplementary video from the full text showing the ants' ability (or lack thereof) to catch themselves after slipping inside different sized tubes:

ants_nest.png

Photo: flickr/AZAdam

Related content: Discoblog: NCBI ROFL: Ants in your pants? Discoblog: NCBI ROFL: What's better than an earwig with one penis? Discoblog: NCBI ROFL: Traumatic insemination and sexual conflict in the bed bug Cimex lectularius.

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In