Advertisement

New Material Strengthens Like Muscles, Could Lead to Smarter Prosthetics

Discover how healable and tunable materials can grow stronger over time, inspired by muscle tissues. Explore their innovative potential.

Credit: Mykola Holyutyak/Shutterstock

Newsletter

Sign up for our email newsletter for the latest science news

Sign Up

(Inside Science) — Researchers from Japan have come up with a way to encourage materials to grow stronger over time, like the muscles in our body. The new technique could allow engineers to design adaptable and healable materials for a wide range of applications.

When we lift weights in the gym, the mechanical stress causes our muscle fibers to rip and tear, but this damaging action actually allows the fibers to regrow stronger afterwards. In contrast, nonliving materials such as rubber bands or paper clips tend to weaken and deteriorate after repeated use.

Drawing inspiration from muscle tissues, a research group from Hokkaido University in Sapporo, Japan, designed a hydrogel that contains two intertwining networks of polymers — materials formed by long chains of molecules such as those found in plastics.

The hydrogel threads are submerged and stretched in a solution that contains monomers — building materials for polymers similar to what amino acids are to muscles. The stretching causes the threads to partially tear, then the monomers in the solution allow them to regrow and become stronger.

The researchers observed the properties of the hydrogel threads after repeatedly stretching them and letting them heal. The threads eventually became 1.5 stronger and 23 times stiffer, and they also displayed a considerably bulkier physique, having beefed up to almost twice the original mass.

The researchers suggest this new fabrication technique could be used to customize specific materials to specific challenges, by starting with different polymers and monomer combinations. It may lead to healable and tunable materials useful in biomedical applications, such as for prosthetics and orthotics.

The paper was published last week in the journal Science.

[This story originally appeared on Inside Science.]

Stay Curious

JoinOur List

Sign up for our weekly science updates

View our Privacy Policy

SubscribeTo The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Subscribe
Advertisement

1 Free Article