Brain maturation continues for longer than previously thought - well up until age 30. That's according to two papers just out, which may be comforting for those lamenting the fact that they're nearing the big Three Oh.
This challenges the widespread view that maturation is essentially complete by the end of adolescence, in the early to mid 20s.
Petanjek et al show that the number of dendritic spines in the prefrontal cortex increases during childhood and then rapidly falls during puberty - which probably represents a kind of "pruning" process. That's nothing new, but they also found that the pruning doesn't stop when you hit 20. It continues, albeit gradually, up to 30 and beyond.
This study looked at post-mortem brain samples taken from people who died at various different ages. Lebel and Beaulieu used diffusion MRI to examine healthy living brains. They scanned 103 people and everyone got at least 2 scans a few year years apart, so they could look at changes over time.
They found that the fractional anisotropy (a measure of the "integrity") of different white matter tracts varies with age in a non-linear fashion. All tracts become stronger during childhood, and most peak at about 20. Then they start to weaken again. But not all of them - others, such as the cingulum, take longer to mature.
Also, total white matter volume continues rising well up to age 30.
Plus, there's a lot of individual variability. Some people's brains were still maturing well into their late 20s, even in white matter tracts that on average are mature by 20. Some of this will be noise in the data, but not all of it.
These results also fit nicely with this paper from last year that looked at functional connectivity of brain activity.
So, while most maturation does happen before and during adolescence, these results show that it's not a straightforward case of The Adolescent Brain turning suddenly into The Adult Brain when you hit 21, which point it solidifies into the final product,
Lebel C, & Beaulieu C (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. The Journal of Neuroscience, 31 (30), 10937-47 PMID: 21795544
Petanjek, Z., Judas, M., Simic, G., Rasin, M., Uylings, H., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1105108108