Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Mind

Does AI Need Guts to Get to the Singularity?

Science Not FictionBy Malcolm MacIverFebruary 3, 2011 8:28 AM

Newsletter

Sign up for our email newsletter for the latest science news

img_36181-300x225.jpg

We all have our favorite capacity/organ that we fail modern-day AI for not having, and that we think it needs to have to get truly intelligent machines. For some it's consciousness, for others it is common sense, emotion, heart, or soul. What if it came down to a gut? That we need to make our AI have the capacity to get hungry, and slake that hunger with food, for the next real breakthrough? There's some new information on the role of gut microbes in brain development that's worth some mental mastication in this regard (PNAS via PhysOrg). Rochellys Diaz Heijtza and Sven Pettersson and colleagues raised mice in a germ free environment and compared them to mice raised with normal gut bugs. The researchers found that compared to the germ-free mice, the normal mice had reduced expression of two brain molecules, synaptophysin, and PSD-95, in a region of the brain called the striatum. Correlating with this, the germ-free mice had higher levels of activity, and less anxiety than the mice with the normal complement of gut microbes. Amazingly, they also found that there was a "sensitive period" of exposure -- a time before which exposure to the gut bugs mattered, and after which exposure didn't change the brain any more. This is characteristic of many brain regions such as visual cortex, which needs normal visual input to develop properly and provide normal visual ability. If you provide that normal input after the sensitive period, the brain doesn't fix itself. The scientists found that exposing the germ-free mice to normal gut microbes up to about 6 weeks of age resulted in normal levels of movement and anxiety; but exposure after that age resulted in no change. How can this be? The paper has some specific technical suggestions, but if you think broadly about animals versus plants, it isn't completely surprising. Next time you are eating your salad, consider how it is that you ended up eating your greens, rather than the greens eating you. It's a story that's almost two billion years in the making. About 1.6 billion years ago, animals and plants went on their separate ways. One type of organism has the "stay in place and absorb" energy strategy. These are the plants, which sit and photosynthesize all day. The other organism has the "go around and get it" energy strategy - that's you. The innovation of being an animal, in comparison to plants, is to have a gut with an ability to move, and a nervous system to detect the next good thing to put into that gut and then control the movement system to get the gut to the food. The correspondence between a mobile gut and having a nervous system is so deep that some animals that give up mobility later in life also lose their nervous system. Ironically, they digest it. This is the tunicate, an animal that swims around in early life, but once they mature, they find a place to settle down on the ocean floor. Having done that, they digest most of their nervous system (some have compared this to getting tenure). So, it is not a big surprise that key neurotransmitters like serotonin (most of which is excreted by cells in the gut wall in response to food), dopamine, glutamate, GABA, and norepinephrine are heavily represented in the gut, or that the gut is equipped with its own nervous system that has some one hundred million neurons, and almost the same number of types of neurons as the brain (Heribert Watzke has a stimulating TED talk on this). I know what you're thinking. This is just a story of how brains came to be. For the purposes of intelligence, the energy may as well come from a portable fusion reactor for all it matters. So any suggestion that AI needs a gut to reach the next level is misguided. I'll argue that this viewpoint is overly simplistic. Years ago the philosopher Patricia Churchland and the computational neuroscientist Terrence Sejnowski wrote a book called "The Computational Brain." In it, they made a striking point regarding a pervasive belief in the AI community regarding the study of the brain. Most of the AI community view the key cognitive powers they are chasing as logically independent of any specific implementation. That is, it's a formal system they are trying to uncover, and whether that formal system is encoded in silicon, punch cards, a hydraulic machine, biological material, or whatever, does not matter, just as whether the pieces of a chess game are made out of plastic or wood, or pictures on a computer screen, doesn't matter. Because of this---the multiple realizability of formal systems--some people in AI believe that study the brain is irrelevant. The brilliant point that Churchland and Sejnowski made was that, although it is true that once you understand the mechanism of the brain, at least certain parts of it may be formally independent of any particular instantiation, the key question for humanity right now is how do we get to this understanding. To get there, they said, we might take our cue from the only existing examples of things that are truly intelligent: animals. We need to study how real examples of intelligence work, crack their mechanism in their full wetware glory, and after that, we can potentially formalize and instantiate in silicon or whatever material we want. Until recently, most of neuroscience had little inclination to mine questions of how appetitive drives such as hunger, and motivations in general, feed into the rich biomechanical and neuronal story that is being uncovered through the mechanistic study of animals. And yet, as I wrote above, the acquisition of energy through moving the gut around is foundational to "animal-hood" in the first place. Studies like the one showing ties between brain development and the gut testify to the deep interconnections of nervous systems and the guts they evolved to satisfy. We have every reason to think that a full understanding of gut-brain interactions, and associated reward systems, will lead to a better understanding of how to build an intelligent machine. From this understanding we are also more likely to be able to build machines with the "right" connection between motivations and action, a central issue for people concerned about the consequences of The Singularity for the future of our species. Image of Olaf Breuning's "Big Brain Small Stomach" from Arrested Motion

    2 Free Articles Left

    Want it all? Get unlimited access when you subscribe.

    Subscribe

    Already a subscriber? Register or Log In

    Want unlimited access?

    Subscribe today and save 70%

    Subscribe

    Already a subscriber? Register or Log In