What is the difference between the human genome and a pair of headphones?

Not Exactly Rocket Science
By Ed Yong
Oct 12, 2009 5:30 PMNov 5, 2019 12:14 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

If you've ever put a pair of headphones in your pocket, you'll know how difficult it is to keep a long cord in a bundle without getting it hopelessly tangled and knotted. You'll also start to appreciate the monumental challenge that our cells face when packaging our DNA. At 2 metres in length, the human genome is longer than the average human. But in every one of our cells, the genome needs to fit inside the nucleus, a tiny compartment just 6 millionths of a metre long. How does it do it? One of the secrets behind this monumental feat of folding has just been revealed by research that shows the human genome's three-dimensional structure. A team of scientists led by Erez Lieberman-Aiden and Nynke van Berkum found that our genome folds into a shape called a "fractal globule", where the long strands of DNA are densely packed but without a single knot. It's an awe-inspiring feat of space-saving and keeps DNA accessible. When a particular gene is needed, the DNA it sits on can be easily unpacked. Lieberman explains, "The best way to think about it is that it looks like a pack of ramen noodles when you just start cooking them: really dense, but totally unentangled, so you can pull out a noodle or a bunch of noodles without disrupting the rest." Previously, scientists suggested that the genome folds into a more tangled structure called the "equilibrium globule", which is more like ramen noodles post-cooking - a massive knotted mess from which single noodles are difficult to extract. Until now, the fractal globule was a theoretical shape that existed only in the minds of mathematicians. This is the first time that it has been observed in reality. The shape was first described by a mathematician Guiseppe Peano in 1890 and in 1988, Alexander Grosberg proposed that a long molecule might spontaneously fold into such a shape under the right conditions. Still, it took till this week for anyone to observe a fractal globule in reality. "[Peano] had no idea that it described any actual object in the universe," says Lieberman-Aiden, "but it turns out it describes the genome!"

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.