Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Health

Vertical Farming on the High Rise

Science & FoodBy Catherine HuMay 18, 2016 12:00 AM

Newsletter

Sign up for our email newsletter for the latest science news

Imagine getting your fresh produce directly off of a nearby building. This building would have multiple stories, with an intricate system that cultivates different plants on every level. This is an example of vertical farming, an idea proposed by Columbia University microbiology and Public Health professor Dickson Despommier, where food is continuously grown in tall buildings within an engineered environment [1]. With an estimated 1,090,000 square miles (about 120% the size of Brazil) of farmland needed to grow enough food for the world’s population in 2050, it is no wonder that vertical farming has been on the rise [2]. In fact, one acre of vertical farm is estimated to equate to about 10 to 20 traditional soil-based farms [1].

Vertical_farm2.jpg

Design of a vertical farm. Photocredit: (Cjacobs627/Wikimedia) Hydroponics Implementation of vertical farms requires new innovations for delivering nutrients to plants. Enter hydroponics, a soil-less way of delivering nutrients to the plants through a mineral enriched water solution. One example of this system was developed by Verticrop^TM; the product consists of suspended trays that are moved around on a conveyor to optimize access to air and light [3]. Run-off water and nutrients are then recycled [3]. Hydroponics has successfully resulted in 20 to 25% higher yields of produce when compared to conventional cultivation [4].

8787759694_a55af8e9ac_c.jpg

Hydroponics offers a soil-less way to deliver nutrients to plants. Photocredit: (Britt Reints/Flickr) Feasibility Large-scale vertical farms may be difficult to implement. Land in urban cities is much more expensive when compared with rural farmland, which is also more abundant [5]. In addition, complex irrigation and climate control systems must be established, which can increase cost of production [5]. One company, Vertical Harvest Hydroponics, provides a smaller scale alternative with a vertical farm set-up that fits in a portable boxcar-sized cargo container [6]. Each container can produce 1,800 heads of cabbage and other leafy greens at a time. The company hopes to lower costs attributed to the food chain supply and provide fresh produce to remote communities [7]. Vertical farms have the potential to conserve resources, provide fresh food to remote areas, and remove the role of fossil fuels. However, vertical farms may be difficult to put into action due to cost and required resources. For now, hydroponics and small-scale vertical farming may just be the stepping-stones needed to take indoor gardening to a whole new level. References Cited:

  1. Despommier, D. D. (n.d.). The Vertical Essay. Retrieved from: http://www.verticalfarm.com/?page_id=36

  2. Pati, R., Abelar, M. (2015). The Application and Optimization of Metal Reflectors to Vertical Greenhouses to Increase Plant Growth and Health. Journal of Agricultural Engineering and Biotechnology, 3(2): 63-71.

  3. Vertical Takeoff. (2011) Fresh Produce Journal. 62-66.

  4. Wahome, P.K., Oseni, T.O., Masarirambi, M.T., Shongwe, V.D. (2011). Effects of Different Hydroponics Systems and Growing Media on the Vegetative Growth, Yield and Cut Flower Quality of Gypsophila (Gypsophila paniculata L.). World Journal of Agricultural Sciences 7(6): 692-698

  5. Johnson, K. (2016, January 3). Closing the Farm-to-Table Gap in Alaska. The New York Times Magazine. Retrieved from http://www.nytimes.com

  6. Beyer, S. (2015, April 9). Newark Subsidizes A Crackpot Idea: Vertical Farming. Forbes. Retrieved from http://www.forbes.com/

  7. Willingham, C., Perpich, D., Janes, L. (2016) Vertical Harvest Hydroponics. Retrieved from http://verticalharvesthydroponics.com/


 Catherine Hu received her B.S. in Psychobiology at UCLA. When she is not writing about food science, she enjoys exploring the city and can often be found enduring long wait times to try new mouthwatering dishes. Read more by Catherine Hu

catherinehusmall.jpg

About the author:


3 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In