Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Health

Two Types of Nanoparticles Work Together to Target Tumors

nanoparticles.jpg

Newsletter

Sign up for our email newsletter for the latest science news

What's the News: Researchers have developed a new, more targeted way to deliver cancer-fighting drugs, in which some nanoparticles zero in on a tumor, then summon another type of nanoparticles that actually dispense the drug. This method, detailed in a new study published online by Nature Materials, piggybacks on the body's underlying biochemistry, using the chain of events that makes blood clot to call the drug-bearing nanoparticles to the site. How the Heck:

  • The nanoparticles that home in on the tumor are tiny gold nanorods, which can penetrate the blood vessels surrounding the tumor. (The blood vessels surrounding tumors, which grow rapidly as the tumor expands, tend to be more porous than blood vessels elsewhere in the body, letting the nanoparticles target tumors in particular.)

  • The researchers then shone light onto the gold nanorods. This heated the nanorods slightly, causing just enough damage to the tumor tissue to trigger the body's clotting process.

  • When the body senses damage to a blood vessel, it starts a biochemical chain reaction---called a cascade---to repair the injury. At the end of the cascade, strands of a molecule called fibrin come together, helping to form a clot.

  • The second nanoparticle is clad in bits of proteins that bind to fibrin. This particle also carries the chemotherapy drug, so when it binds to the fibrin, it delivers the drug to the tumor.

  • In a test of the method in mice, the scientists found that forty times more of the drug reached tumors in mice given both nanoparticles, compared to mice given a treatment without this scout-then-surge approach. The tumors in the former group---but not the latter---stopped growing.

What's the Context:

  • One of the big problems in drug delivery is how to get as much of the drug as possible to the tumor (or other disease site). Some nanoparticles already passively target tumors by taking advantage of their more permeable blood vessels, while others actively target tumors by binding to particular proteins there. This drug delivery system uses the passive-targeting mechanism as a starting point, but has the added advantage of a second wave of particles that further zero in on the tumor.

  • Several challenges remain before the drug is ready for use in people, particularly ensuring that the nanoparticles trigger blood clots only in tumors, not elsewhere in the body.

Reference: Geoffrey von Maltzahn et al. "Nanoparticles that communicate in vivo to amplify tumour targeting." Nature Materials, published online before print June 19, 2011. DOI:10.1038/nmat3049Image: Gary Carlson

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In