Health

Selection & the innate immune system

Gene ExpressionBy Razib KhanApr 10, 2009 2:22 PM

Newsletter

Sign up for our email newsletter for the latest science news
 

Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature:

We tested the opposing views concerning evolution of genes of the innate immune system that (i) being evolutionary ancient, the system may have been highly optimized by natural selection and therefore should be under purifying selection, and (ii) the system may be plastic and continuing to evolve under balancing selection. We have resequenced 12 important innate-immunity genes (CAMP, DEFA4, DEFA5, DEFA6, DEFB1, MBL2, and TLRs 1, 2, 4, 5, 6, and 9) in healthy volunteers (n = 171) recruited from a region of India with high microbial load. We have compared these data with those of European-Americans (EUR) and African-Americans (AFR). We have found that most of the human haplotypes are many mutational steps away from the ancestral (chimpanzee) haplotypes, indicating that humans may have had to adapt to new pathogens. The haplotype structures in India are significantly different from those of EUR and AFR populations, indicating local adaptation to pathogens. In these genes, there is (i) generally an excess of rare variants, (ii) high, but variable, degrees of extended haplotype homozygosity, (iii) low tolerance to nonsynonymous changes, (iv) essentially one or a few high-frequency haplotypes, with star-like phylogenies of other infrequent haplotypes radiating from the modal haplotypes. Purifying selection is the most parsimonious explanation operating on these innate immunity genes. This genetic surveillance system recognizes motifs in pathogens that are perhaps conserved across a broad range of pathogens. Hence, functional constraints are imposed on mutations that diminish the ablility of these proteins to detect pathogens.

Purifying selection presumably suggests that the variants on many of these genes are fitness optimized, as new variants are quickly removed from the population due to their low fitness. Nevertheless the differences between populations, and form chimps, would indicate periodic pulses of positive selection fixing new favorable variants.

1 free article left
Want More? Get unlimited access for as low as $1.99/month
Already a subscriber? Log In or Register
1 free articleSubscribe
Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Log In or Register
More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 70% off the cover price when you subscribe to Discover magazine.

Copyright © 2021 Kalmbach Media Co.