We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

No need to put a spin on this science: the physics of slowly spinning soccer ball flight.

Seriously, Science?
By Seriously Science
Jul 16, 2013 7:00 PMNov 20, 2019 1:23 AM


Sign up for our email newsletter for the latest science news

http://www.youtube.com/watch?v=a_36rzK_RE8 This paper is pretty awesome. The authors take a commonly observed yet mysterious phenomenon and break it down with some hard-core physics. Turns out that the slow spin seen when a soccer ball flies through the air doesn't depend on how the ball is kicked, because the authors observe the same behavior when the ball is shot out of a machine, or even when dropped straight down. They go on to do a series of experiments, including several involving shooting soccer balls through smoke, and determine that the seams on the surface of the ball are required for the spin, although different sewing patterns don't seem to matter (pun intended).The strange flight behaviour of slowly spinning soccer balls. "The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights."

Bonus quote from the full text:

"The results of the free-fall, ball shooting, and wind tunnel experiments indicated that the seams on the soccer ball surface promoted the transition of boundary layer from laminar to turbulent flow and yielded the supercritical Re number flow, accompanied with the Ω vortex and the twin longitudinal vortices around soccer balls. Thus, the random behaviour of the slowly spinning soccer ball's flight is mainly caused by the unstable movements of these vortices. Incidentally, strangely behaving volleyballs that undergo floater serves exhibit the same type of moving behaviour and aerodynamic as that of soccer balls. Although scientific viewpoints regarding similar types of sports ball phenomena have generally been ignored in the literature, this finding may evoke scientific interests in sports science."

Related content: NCBI ROFL: World Cup Week: Choose wisely, rooting for the winning team DOES make you more manly.

NCBI ROFL: Study proves hot baseball players more likely to pummel you with their balls.

NCBI ROFL: Impact of Yankee Stadium Bat Day on blunt trauma in northern New York City.

1 free article left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

1 free articleSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!


Already a subscriber?

Register or Log In

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Our List

Sign up for our weekly science updates.

To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.