An umbrella against the mutational showers

Gene Expression
By Razib Khan
May 18, 2010 12:41 PMNov 20, 2019 4:16 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

Mutations are as you know a double-edged sword. On the one hand mutations are the stuff of evolution; neutral changes on the molecular or phenotypic level are the result of from mutations, as are changes which enhance fitness and so are driven to fixation by positive selection. On the other hand mutations also tend to cause problems. In fact, mutations which are deleterious far outnumber those which are positive. It is much easier to break complex systems which are near a fitness optimum than it is to improve upon them through random chance. In fact a Fisherian geometric analogy of the affect of genes on fitness implies that once a genetic configuration nears an optimum mutations of larger effect have a tendency to decrease fitness. Sometimes environments and selection pressures change radically, and large effect mutations may become needful. But despite their short term necessity these mutations still cause major problems because they disrupt many phenotypes due to pleiotropy. But much of the playing out of evolutionary dynamics is not so dramatic. Instead of very costly mutations for good or ill, most mutations may be of only minimal negative effect, especially if they are masked because of recessive expression patterns. That is, only when two copies of the mutation are present does all hell break loose. And yet even mutations which exhibit recessive expression tend to generate some drag on the fitness of heterozygotes. And if you sum small values together you can obtain a larger value. This gentle rain of small negative effect mutations can be balanced by natural selection, which weeds does not smile upon less fit individuals who have a higher mutational load. Presumably those with "good genes," fewer deleterious mutations, will have more offspring than those with "bad genes." Because mutations accrue from one generation to the next, and, there is sampling variance of deleterious alleles, a certain set of offspring will always be gifted with fewer deleterious mutations than their siblings. This is a genetics of chance. And so the mutation-selection balance is maintained over time, the latter rising to the fore if the former comes to greater prominence. The above has been a set of logic inferences from premises. Evolution is about the logic of life's process, but as a natural science its beauty is that it is testable through empirical means. A short report in Science explores mutational load and fitness, and connects it with the ever popular topic of sexual selection, Additive Genetic Breeding Values Correlate with the Load of Partially Deleterious Mutations:

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.