Register for an account

X

Enter your name and email address below.

Your email address is used to log in and will not be shared or sold. Read our privacy policy.

X

Website access code

Enter your access code into the form field below.

If you are a Zinio, Nook, Kindle, Apple, or Google Play subscriber, you can enter your website access code to gain subscriber access. Your website access code is located in the upper right corner of the Table of Contents page of your digital edition.

Environment

Theoretical Metamaterial Could Protect Buildings From Earthquakes By Dissipating Energy

seismic-barrier.jpg

Newsletter

Sign up for our email newsletter for the latest science news

Metamaterials---materials engineered to have optical, thermal, or other specific properties naturally occurring substances don't---can block, bend, and otherwise manipulate all sorts of waves: they can, at least in theory, twist light to render objects invisible, contort ultrasound waves to hide things from sonar, and disguise the telltale wake of a submarine. Now, in an arXiv paper, Australian and Korean researchers have suggested another wave-altering use for metamaterials: protecting buildings from earthquakes' powerful seismic waves. Rather than bending or deflecting the waves, as most metamaterial cloaks do, the proposed earthquake barrier would dissipate the energy from the waves, causing them to taper off---and protecting the building it surrounds. The barrier would be composed of large concrete tubes with holes in the sides, sunk in the ground around a building; the paper looks specifically at circular tubes (see above), but cubic or hexagonal tubes, the researchers write, would work too. A full barrier, enveloping a structure's foundations with many tubes, might measure 200 feet across, they suggest.

metamaterial.jpg

Since this method of seismic protection would require some space around the building, as the illustration at left depicts, it wouldn't be much use in cities or other densely packed areas. It could be useful, however, for more isolated structures, the scientists point out, including "power plants, dams, airports, nuclear reactors, oil refining complexes, long-span bridges, [and] express rail-roads." And as for where that seismic energy goes after the barrier dissipates it, the scientists say it would turn into heat and sound. As Technology Review's arXiv blog points out, that's an extremely large, unspecified amount of energy---and the researchers don't offer numbers suggesting concrete could handle that sort of heat or sound. If it can't, the barrier might protect a structure from an earthquake only to damage it with a blast of sound waves or heat. [via Technology Review]

Images courtesy of Sang-Hoon Kima & Mukunda P. Das / arXiv

2 Free Articles Left

Want it all? Get unlimited access when you subscribe.

Subscribe

Already a subscriber? Register or Log In

Want unlimited access?

Subscribe today and save 70%

Subscribe

Already a subscriber? Register or Log In