We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

Making a New Mosquito

Will tinkering make mosquitoes better or worse?

By Eric Weeks and Michael DAntonio
May 1, 2001 5:00 AMNov 12, 2019 6:10 AM

Newsletter

Sign up for our email newsletter for the latest science news
 

In a cluttered lab annex at Michigan State University, two entomologists huddle in front of a 25-inch computer monitor aglow with a jumble of fuzzy antennae, bent legs, and multilensed eyes. Dressed in a white coat, his face lighted by the screen, Vladimir Kokoza works his keyboard and mouse to bring an insect's body parts into focus. Soon an image emerges of an Aedes aegypti mosquito enlarged to horror film dimensions. Leaning over Kokoza's shoulder, Alexander Raikhel points to the insect's eyes, noticeably a deep red thanks to genetic manipulation. Raikhel's pale face softens into a paternal smile. "These little Aedes are one step toward making a series of custom-made mosquitoes," he says.

Bloodsucking mosquitoes are perhaps Earth's most persistent scourge, delivering malaria, dengue, yellow fever, and a host of other diseases each year to more than half a billion people and killing between 2 million and 3 million. In the United States alone, billions of gallons of pesticides are sprayed each year in an effort to eradicate the tiny beasts. But at Raikhel's East Lansing lab, mosquitoes are treated with lavish care. They occupy safe, temperature- controlled rooms. They are protected from predators and disease. And Raikhel's associate, Kokoza, on occasion offers up his own flesh for feedings, coaxing even the feeble ones to partake of his blood.

Nothing is too good for these laboratory mosquitoes, because Raikhel and Kokoza believe they can be transformed from disease vectors into disease fighters. Through various forms of genetic manipulation, Raikhel and his competitors at a handful of other labs are trying to deprive mosquitoes of their ability to spread parasitic infections. Raikhel's strategy is to boost the immune response of mosquitoes so that they kill pathogens they would normally harbor and pass on to humans. Red eyes serve as markers in his laboratory brood of modified Aedes mosquitoes for a designer gene that triggers heightened production of the immune protein defensin, which recognizes many microbes and destroys them.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.