We have completed maintenance on DiscoverMagazine.com and action may be required on your account. Learn More

How Astronomers Learned to ‘Listen’ to Gravitational Waves

Since confirming the existence of ripples in the fabric of space-time some five years ago, the LIGO/Virgo collaboration has advanced gravitational-wave research by leaps and bounds.

By Caitlyn Buongiorno
Jul 9, 2020 9:00 PMJul 10, 2020 4:10 PM
Blackholemerger
An artist’s illustration of two black holes coalescing. As they collide, the two black holes produce gravitational waves that ripple through the fabric of space-time. (Credit: National Science Foundation)

Newsletter

Sign up for our email newsletter for the latest science news
 

Over 100 years ago, Albert Einstein published his general theory of relativity, laying the foundation for our modern view of gravity. Einstein proposed that massive objects can warp the fabric of space-time, with the heaviest, densest objects, such as stars and black holes, creating deep “gravity wells” in the fabric. And much like a donated penny rolls along a curved path when it’s dropped into a charity well, Einstein realized that when light passes through a gravity well, the photons' paths likewise get deformed.

But that’s far from all that Einstein’s theory predicted. It also suggested that when two very massive objects spiral toward each other before colliding, their individual gravity wells interact. And as two whirlpools rotating around each other in an ocean would send out strong ripples in the water, two inspiraling cosmic objects send out ripples across space-time — known as gravitational waves.

Despite Einstein’s prediction of the existence of gravitational waves, it wasn’t until 1974 — nearly 20 years after his death — that two astronomers using the Arecibo Observatory in Puerto Rico found the first indirect evidence of gravitational waves. But It was another four decades before scientists found direct proof of them. On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detectors in Hanford, Washington, and Livingston, Louisiana, both captured the telltale “chirp” of gravitational-waves, generated when two black holes collided some 1.3 billion light-years away.

With this first detection of gravitational waves, astronomers proved the existence of an entirely new tool that they could use to explore the cosmos, ushering in an era of multi-messenger astronomy that will help them answer the biggest lingering questions in astrophysics and cosmology.

0 free articles left
Want More? Get unlimited access for as low as $1.99/month

Already a subscriber?

Register or Log In

0 free articlesSubscribe
Discover Magazine Logo
Want more?

Keep reading for as low as $1.99!

Subscribe

Already a subscriber?

Register or Log In

Stay Curious

Sign up for our weekly newsletter and unlock one more article for free.

 

View our Privacy Policy


Want more?
Keep reading for as low as $1.99!


Log In or Register

Already a subscriber?
Find my Subscription

More From Discover
Recommendations From Our Store
Shop Now
Stay Curious
Join
Our List

Sign up for our weekly science updates.

 
Subscribe
To The Magazine

Save up to 40% off the cover price when you subscribe to Discover magazine.

Copyright © 2024 Kalmbach Media Co.